407 research outputs found

    Otkrivanje pogreške u analognim sklopovima analizom relativne amplitude i faze

    Get PDF
    A new method for detection of parametric faults occurring in analog circuits based on relative amplitude and relative phase analysis of the Circuit Under Test (CUT) is proposed. The relative amplitude is the common power change of the signals and the relative phase presents the relative phase offset of the signals. In the proposed method, the value of each component of the CUT is varied within its tolerance limit using Monte Carlo simulation. The upper and lower bounds of relative amplitude and phase of the CUT sampling series are obtained. While testing, the relative amplitude and phase value of the analog circuit are obtained. If any one of the relative amplitude and phase values exceed the bounds then the CUT is declared faulty. The effectiveness of the proposed method is validated through HSpice/MATLAB simulations of two benchmark circuits and the practical circuit test of Tow-Thomas circuit.U ovome članku predložena je nova metoda otkrivanja parametarskih pogrešaka u analognim sklopovima temeljena na analizi relativne amplitude i faze promatranog sklopa (eng. Circuit Under Test, CUT). Relativna amplituda predstavlja zajedničku promjenu snage signala, dok relativna faza predstavlja pomak u fazi među signalima. U predloženoj metodi, koristeći Monte Carlo simulacije, vrijednost svake komponente CUT-a mijenja se unutar svojih granica tolerancije. Na taj način dobivaju se gornja i donja granica relativne amplitude i faze CUT uzoraka, dok se sama relativna amplituda i faza dobivaju tijekom testiranja. U slučaju da ijedan od tih dvaju faktora prelazi granicu, CUT se proglašava neispravnim. Učinkovitost predložene metode ispitana je pomoću HSpice/MATLAB simulacija nad dva referentna sklopa te na Tow-Thomas sklopu

    Towards Automated Urban Planning: When Generative and ChatGPT-like AI Meets Urban Planning

    Full text link
    The two fields of urban planning and artificial intelligence (AI) arose and developed separately. However, there is now cross-pollination and increasing interest in both fields to benefit from the advances of the other. In the present paper, we introduce the importance of urban planning from the sustainability, living, economic, disaster, and environmental perspectives. We review the fundamental concepts of urban planning and relate these concepts to crucial open problems of machine learning, including adversarial learning, generative neural networks, deep encoder-decoder networks, conversational AI, and geospatial and temporal machine learning, thereby assaying how AI can contribute to modern urban planning. Thus, a central problem is automated land-use configuration, which is formulated as the generation of land uses and building configuration for a target area from surrounding geospatial, human mobility, social media, environment, and economic activities. Finally, we delineate some implications of AI for urban planning and propose key research areas at the intersection of both topics.Comment: TSAS Submissio

    Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting

    Full text link
    The distribution shift in Time Series Forecasting (TSF), indicating series distribution changes over time, largely hinders the performance of TSF models. Existing works towards distribution shift in time series are mostly limited in the quantification of distribution and, more importantly, overlook the potential shift between lookback and horizon windows. To address above challenges, we systematically summarize the distribution shift in TSF into two categories. Regarding lookback windows as input-space and horizon windows as output-space, there exist (i) intra-space shift, that the distribution within the input-space keeps shifted over time, and (ii) inter-space shift, that the distribution is shifted between input-space and output-space. Then we introduce, Dish-TS, a general neural paradigm for alleviating distribution shift in TSF. Specifically, for better distribution estimation, we propose the coefficient net (CONET), which can be any neural architectures, to map input sequences into learnable distribution coefficients. To relieve intra-space and inter-space shift, we organize Dish-TS as a Dual-CONET framework to separately learn the distribution of input- and output-space, which naturally captures the distribution difference of two spaces. In addition, we introduce a more effective training strategy for intractable CONET learning. Finally, we conduct extensive experiments on several datasets coupled with different state-of-the-art forecasting models. Experimental results show Dish-TS consistently boosts them with a more than 20% average improvement. Code is available.Comment: Accepted by AAAI 202

    Reinforced Imitative Graph Learning for Mobile User Profiling

    Get PDF
    Mobile user profiling refers to the efforts of extracting users’ characteristics from mobile activities. In order to capture the dynamic varying of user characteristics for generating effective user profiling, we propose an imitation-based mobile user profiling framework. Considering the objective of teaching an autonomous agent to imitate user mobility based on the user’s profile, the user profile is the most accurate when the agent can perfectly mimic the user behavior patterns. The profiling framework is formulated into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of the environment is a fused representation of a user and spatial entities. An event in which a user visits a POI will construct a new state, which helps the agent predict users’ mobility more accurately. In the framework, we introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected spatial entities. Additionally, we develop a mutual-updating strategy to quantify the state that evolves over time. Along these lines, we develop a reinforcement imitative graph learning framework for mobile user profiling. Finally, we conduct extensive experiments to demonstrate the superiority of our approach

    An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model

    No full text
    High spatiotemporal resolution satellite imagery is useful for natural resource management and monitoring for land-use and land-cover change and ecosystem dynamics. However, acquisitions from a single satellite can be limited, due to trade-offs in either spatial or temporal resolution. The spatial and temporal adaptive reflectance fusion model (STARFM) and the enhanced STARFM (ESTARFM) were developed to produce new images with high spatial and high temporal resolution using images from multiple sources. Nonetheless, there were some shortcomings in these models, especially for the procedure of searching spectrally similar neighbor pixels in the models. In order to improve these modelsâ?? capacity and accuracy, we developed a modified version of ESTARFM (mESTARFM) and tested the performance of two approaches (ESTARFM and mESTARFM) in three study areas located in Canada and China at different time intervals. The results show that mESTARFM improved the accuracy of the simulated reflectance at fine resolution to some extent

    Reinforced Imitative Graph Representation Learning for Mobile User Profiling: An Adversarial Training Perspective

    Full text link
    In this paper, we study the problem of mobile user profiling, which is a critical component for quantifying users' characteristics in the human mobility modeling pipeline. Human mobility is a sequential decision-making process dependent on the users' dynamic interests. With accurate user profiles, the predictive model can perfectly reproduce users' mobility trajectories. In the reverse direction, once the predictive model can imitate users' mobility patterns, the learned user profiles are also optimal. Such intuition motivates us to propose an imitation-based mobile user profiling framework by exploiting reinforcement learning, in which the agent is trained to precisely imitate users' mobility patterns for optimal user profiles. Specifically, the proposed framework includes two modules: (1) representation module, which produces state combining user profiles and spatio-temporal context in real-time; (2) imitation module, where Deep Q-network (DQN) imitates the user behavior (action) based on the state that is produced by the representation module. However, there are two challenges in running the framework effectively. First, epsilon-greedy strategy in DQN makes use of the exploration-exploitation trade-off by randomly pick actions with the epsilon probability. Such randomness feeds back to the representation module, causing the learned user profiles unstable. To solve the problem, we propose an adversarial training strategy to guarantee the robustness of the representation module. Second, the representation module updates users' profiles in an incremental manner, requiring integrating the temporal effects of user profiles. Inspired by Long-short Term Memory (LSTM), we introduce a gated mechanism to incorporate new and old user characteristics into the user profile.Comment: AAAI 202

    Reinforcement-Enhanced Autoregressive Feature Transformation: Gradient-steered Search in Continuous Space for Postfix Expressions

    Full text link
    Feature transformation aims to generate new pattern-discriminative feature space from original features to improve downstream machine learning (ML) task performances. However, the discrete search space for the optimal feature explosively grows on the basis of combinations of features and operations from low-order forms to high-order forms. Existing methods, such as exhaustive search, expansion reduction, evolutionary algorithms, reinforcement learning, and iterative greedy, suffer from large search space. Overly emphasizing efficiency in algorithm design usually sacrifices stability or robustness. To fundamentally fill this gap, we reformulate discrete feature transformation as a continuous space optimization task and develop an embedding-optimization-reconstruction framework. This framework includes four steps: 1) reinforcement-enhanced data preparation, aiming to prepare high-quality transformation-accuracy training data; 2) feature transformation operation sequence embedding, intending to encapsulate the knowledge of prepared training data within a continuous space; 3) gradient-steered optimal embedding search, dedicating to uncover potentially superior embeddings within the learned space; 4) transformation operation sequence reconstruction, striving to reproduce the feature transformation solution to pinpoint the optimal feature space.Comment: Accepted by NeurIPS 202

    Boosting Urban Traffic Speed Prediction via Integrating Implicit Spatial Correlations

    Full text link
    Urban traffic speed prediction aims to estimate the future traffic speed for improving the urban transportation services. Enormous efforts have been made on exploiting spatial correlations and temporal dependencies of traffic speed evolving patterns by leveraging explicit spatial relations (geographical proximity) through pre-defined geographical structures ({\it e.g.}, region grids or road networks). While achieving promising results, current traffic speed prediction methods still suffer from ignoring implicit spatial correlations (interactions), which cannot be captured by grid/graph convolutions. To tackle the challenge, we propose a generic model for enabling the current traffic speed prediction methods to preserve implicit spatial correlations. Specifically, we first develop a Dual-Transformer architecture, including a Spatial Transformer and a Temporal Transformer. The Spatial Transformer automatically learns the implicit spatial correlations across the road segments beyond the boundary of geographical structures, while the Temporal Transformer aims to capture the dynamic changing patterns of the implicit spatial correlations. Then, to further integrate both explicit and implicit spatial correlations, we propose a distillation-style learning framework, in which the existing traffic speed prediction methods are considered as the teacher model, and the proposed Dual-Transformer architectures are considered as the student model. The extensive experiments over three real-world datasets indicate significant improvements of our proposed framework over the existing methods
    corecore